INFORMACE O PLANETY NEBO JINÍ ZÁJMY JAKO GALAXIE A VESMÍR .Objevovat černý díry a sluneční soustavy a jiné galaxie.

MĚSÍC

Měsíc.jpg

Měsíc

Měsíc je jediná známá přirozená družice Země. Nemá jiné formální jméno než „měsíc“ (odborně Měsíc), i když je občas básnicky nazýván Luna (slovanský a zároveň latinský výraz pro Měsíc). Jeho symbolem je srpek (Unicode: ☾). Kromě slova lunární se podle jména starořecké bohyně Měsíce Seléné používá k odkazu na Měsíc též kmene selene nebo seleno (selenocentrický, Selenité, atd.).

Střední vzdálenost Měsíce od Země je 384 403 km. Měsíční rovníkový průměr je 3 476 km.

První člověkem vyrobené těleso, které dosáhlo Měsíce, byla v roce 1957 sovětská sonda Luna 2, první snímky odvrácené strany Měsíce získala v roce 1959 sonda Luna 3, první měkké přistání a následný přenos obrazu provedla v roce 1966 sonda Luna 9. Roku 1969 přistáli Neil Armstrong a Edwin Aldrin v rámci programu Apollo jako první lidé na Měsíci, a tím se stali i prvními lidmi, kteří stanuli na povrchu jiného vesmírného tělesa než Země. Celkem Měsíc zatím navštívilo dvanáct lidí.

Rotace

 
90° západně
 
Přivrácená strana
 
90° východně
 
Odvrácená strana

Měsíc je v synchronní rotaci se Zemí, což znamená, že jedna strana Měsíce („přivrácená strana“) je stále obrácená k Zemi. Druhou, „odvrácenou stranu“, z větší části nelze ze Země vidět, kromě malých částí poblíž okraje disku, které mohou být příležitostně spatřeny díky libraci. Většina odvrácené strany byla až do éry kosmických sond zcela neznámá.Tato synchronní rotace je výsledkem slapových sil, které zpomalovaly rotaci Měsíce v jeho rané historii, až došlo k rezonanci oběhu a rotace (vázané rotaci).

Odvrácená strana je občas nazývána také „temnou stranou“. „Temná“ v tomto případě znamená „neznámá a skrytá“ a nikoliv „postrádající světlo“; ve skutečnosti přijímá odvrácená strana v průměru zhruba stejné množství slunečního světla jako přivrácená strana. Kosmická loď na odvrácené straně Měsíce je odříznuta od přímé radiové komunikace se Zemí.

Odlišujícím rysem odvrácené strany je téměř úplná absence tmavých skvrn (oblastí s nízkým albedem), tzv. moří.

Oběh

Měsíc vykoná kompletní oběh kolem Země jednou za 29,530588 dne (synodický měsíc). Každou hodinu se Měsíc posune vzhledem ke hvězdám o vzdálenost zhruba rovnou jeho úhlovému průměru, přibližně o 0,5°. Měsíc se liší od většiny satelitů jiných planet tím, že je jeho orbita blízká rovině ekliptiky a nikoliv rovině zemského rovníku.

Některé způsoby nazírání na oběh jsou podrobněji probrány v následující tabulce, ale dva nejběžnější jsou: siderický měsíc, což je doba úplného oběhu vzhledem ke hvězdám, trvající asi 27,3 dnů a synodický měsíc, což je doba, kterou zabere dosažení téže fáze, dlouhá přibližně 29,5 dne. Rozdíl mezi nimi je způsoben tím, že v průběhu oběhu urazí Země i Měsíc určitou vzdálenost na orbitě kolem Slunce.

Gravitační přitažlivost, kterou Měsíc ovlivňuje Zemi, je příčinou slapových jevů, které jsou nejlépe pozorovatelné na střídání mořského přílivu a odlivu. Přílivová vlna je synchronizována s oběhem Měsíce kolem Země. Slapová vzdutí Země způsobená měsíční gravitací se zpožďují za odpovídající polohou Měsíce kvůli odporu oceánského systému – především kvůli setrvačnosti vody a tření, jak se přelévá přes oceánské dno, proniká do zálivů a ústí řek a zase se z nich vrací. Vyjma mořského přílivu a odlivu dochází také ke vzedmutí a poklesu litosférických desek. Následkem toho je část zemského rotačního momentu pozvolna přeměňována do oběhového momentu Měsíce, takže se Měsíc pomalu vzdaluje od Země rychlostí asi 38 mm za rok. Zemský den se vlivem stejných slapových sil zpomaluje o 1,7 milisekundy za století, převážná část tohoto úbytku hybnosti je předána Měsíci.

Synchronnost rotace je přesná pouze v průměru, protože měsíční orbita má jistou výstřednost. Když je Měsíc v perigeu (přízemí), jeho rotace je pomalejší než pohyb po oběžné dráze, což nám umožňuje vidět asi osm stupňů délky z jeho východní (pravé) strany navíc. Na druhou stranu, když se Měsíc dostane do apogea (odzemí), jeho rotace je rychlejší než pohyb po oběžné dráze, což odkrývá dalších osm stupňů délky z jeho západní (levé) strany. To se nazývá optickou librací v délce.

Protože je měsíční orbita nakloněna k zemskému rovníku, Měsíc se zdá oscilovat nahoru a dolů (podobně jako lidská hlava, když pokyvuje na souhlas) při svém pohybu v ekliptikální šířce (deklinaci). Tento jev se nazývá optická librace v šířce a odkrývá pozorovateli z polárních oblastí Měsíce přibližně sedm stupňů šířky.

Na konec, protože je Měsíc vzdálen jen asi 60 zemských poloměrů, pozorovatel na rovníku vidí Měsíc v průběhu noci ze dvou bodů vzdálených od sebe jeden zemský průměr. Tato vlastnost se nazývá optická librace paralaktická a odkrývá asi jeden stupeň měsíční délky.

Země a Měsíc obíhají okolo jejich barycentra nebo obecněji těžiště, které leží asi 4 700 km od zemského středu (asi 3/4 cesty k povrchu). Protože se barycentrum nachází pod povrchem Země, zemský pohyb se dá obecně popsat jako „kolébání“. Podíváme-li se ze zemského severního pólu, Země a Měsíc rotují proti směru hodinových ručiček okolo jejich os; Měsíc obíhá Zemi proti směru hodinových ručiček a Země obíhá Slunce také proti směru hodinových ručiček.

Může vypadat zvláštně, že sklon lunární orbity a vychýlení měsíční osy rotace jsou v přehledu vypsány jako významně se měnící. Zde je třeba poznamenat, že sklon orbity je měřen vzhledem k primární rovníkové rovině (v tomto případě zemské) a vychýlení osy rotace vzhledem k normále vůči rovině orbity satelitu (měsíční). Pro většinu satelitů planet, nikoliv však pro Měsíc, tyto konvence odrážejí fyzikální realitu a jejich hodnoty jsou proto stabilní.

Země a Měsíc formují prakticky „dvojplanetu“: jsou těsněji spjati se Sluncem než jeden s druhým. Rovina měsíční orbity zachovává sklon 5,145 396° vzhledem k ekliptice (orbitální rovině Země) a měsíční osa rotace má stálou výchylku 1,5424° vzhledem k normále na stejnou rovinu. Rovina měsíční orbity vykonává rychlou precesi (tj. její průnik s ekliptikou rotuje ve směru hodinových ručiček) během 6793,5 dnů (18,5996 let), kvůli gravitačnímu vlivu zemské rovníkové deformace. V průběhu této periody se proto zdá, že sklon roviny měsíční orbity kolísá mezi 23,45° + 5,15° = 28,60° a 23,45° −5,15° = 18,30°. Současně se jeví, že výchylka osy měsíční rotace vzhledem k normále na rovinu oběžné dráhy měsíce kolísá mezi 5,15° + 1,54° = 6,69° a 5,15° −1,54° = 3,60°. Za povšimnutí stojí, že výchylka zemské osy také reaguje na tento proces a sama kolísá o 0,002 56° na každou stranu kolem své průměrné hodnoty; tento jev se nazývá nutace.

Body, ve kterých Měsíc protíná ekliptiku se nazývají „lunární uzly“: severní (neboli vzestupný) uzel je tam, kde Měsíc přechází k severu ekliptiky; jižní (neboli sestupný) je tam, kde přechází k jihu. Zatmění Slunce nastává, pokud se uzel střetne s Měsícem v novu; zatmění Měsíce, pokud se uzel střetne s Měsícem v úplňku.

Měsíční intervaly
Název Hodnota (dny) Definice
siderický 27,321 661 547 + 0,000 000 001 857 · r Vzhledem ke vzdáleným hvězdám (13,368 průchodů během tropického roku)
synodický 29,530 588 853 + 0,000 000 002 162 · r Vzhledem ke Slunci (podle fází Měsíce, 12,368 cyklů za tropický rok)
tropický 27,321 582 241 + 0,000 000 001 506 · r Vzhledem k jarnímu bodu (vykonává precesi s periodou ~26 000 a)
anomalistický 27,554 549 878 − 0,000 000 010 390 · r Vzhledem k perigeu (vykonává precesi s periodou 3232,6 d = 8,8504 a)
drakonický 27,212 220 817 + 0,000 000 003 833 · r Vzhledem k vzestupnému uzlu (vykonává precesi s periodou 6793,5 d = 18,5996 a)

Jednotlivé měsíční intervaly nejsou konstantní, ale mění se. Intervaly jsou tedy vyjádřeny jako součet oběhové doby a roční odchylky. Hodnoty jsou vyjádřeny ve dnech jako 86 400 sekund podle SI. Tato data jsou platná pro datum 1. 1. 2000 12:00:00. Parametr r určuje počet let od 1. 1. 2000 podle juliánského kalendáře. Siderický měsíční interval platný pro 1. 1. 2010 se tedy vypočítá podle vzorce: 27,321 661 547 + 0,000 000 001 857 · 10.

Další vlastnosti měsíční orbity
Název Hodnota (d) Definice
Metonický cyklus (tatáž fáze na stejném
místě vzhledem ke vzdáleným hvězdám)
19 let  
Průměrná vzdálenost od Země ~384 403 km  
Vzdálenost v perigeu ~364 397 km  
Vzdálenost v apogeu ~406 731 km  
Průměrná výstřednost 0,0549003 = 3°8'44”  
Perioda regrese uzlů 18,61 let  
Perioda rotace spojnice apsid 8,85 let  
Ekliptický rok 346,6 dnů  
Saros (opakování zatmění) 18 let 10/11 dne  
Průměrný sklon orbity k ekliptice 5°9'  
Průměrný sklon měsíčního rovníku k ekliptice 1°32'  

Původ

Sklon měsíční dráhy činí možnost, že by se Měsíc vytvořil spolu se Zemí, nebo že by byl zachycen později, dost nepravděpodobnou. Jeho původ je předmětem mnoha vědeckých debat.

Jedna z dřívějších spekulací – teorie odtržení – předpokládala, že se Měsíc odtrhl ze zemské kůry vlivem odstředivé síly, zanechávaje za sebou dnešní oceánské dno jako jizvu. Tento koncept by však vyžadoval příliš rychlou počáteční rotaci Země. Někteří si mysleli, že se Měsíc zformoval jinde a byl zachycen na nynější oběžnou dráhu (teorie zachycení). Vědci však nepředpokládají, že by bylo tak malé těleso jako je Země schopno zachytit jiné těleso velikosti Měsíce. Takovou schopnost mají v naši soustavě díky větší gravitaci pouze velké planety (především Jupiter a Saturn).

Další možností je teorie společné akreace, podle níž vznikly Země a Měsíc zhruba ve stejné době z akreačního disku. Tato teorie neumí vysvětlit nedostatek železa na Měsíci. Další předpokládá, že se Měsíc mohl zformovat z úlomků zachycených na oběžné dráze po kolizi asteroidů nebo planetesimál.

V současné době je přijímána teorie velkého impaktu, podle níž Měsíc pochází z vyvrženého materiálu po kolizi formující se žhnoucí Země s planetesimálou velikosti Marsu (pracovně zvanou Theia). Modifikovaná verze této teorie praví, že impaktů mohlo být více, menších, a Měsíc ve své současné podobě se zformoval až na oběžné dráze.

Určená geologická období Měsíce jsou definována na základě datování různých významných impaktů v měsíční historii a stupně jejich vzájemného překrytu.

Nesymetričnost

Slapové síly deformovaly dříve žhavý Měsíc do tvaru elipsoidu s jeho hlavní osou nasměrovanou k Zemi.

I na tuto jeho nesymetrii však existuje alternativní teorie, že po impaktu Thei se na nízké oběžné dráze kolem Země z trosek zformovala hned dvě tělesa najednou, dva měsíce. A tyto nakonec "měkce" splynuly: Přímá i boční srážka by je rozbila, na orbitě kolem Země se však tato dvě tělesa pravděpodobně přibližovala postupně, přitom navíc začala kolem sebe obíhat. Jak se jejich vzdálenost zmenšovala, vzájemně si svázala rotace, takže jejich povrchy se při kontaktu netřely. Z jejich binárního systému postupně unikala energie, zejména vlivem blízké Země, postupně se přibližovala až se dotkla a splynula. Výsledný Měsíc převzal jejich rotační energii, tu ale Země rychle zastavila: Dokonce prý za pouhých 200 let. A protože měl každý z protoměsíců trochu jiné parametry, jako velikost, hmotnost, složení a hlavně hustotu, po splynutí zůstala patrná deformace/asymetrie: Nejen že tvar Měsíce není úplně kulový, dokonce ani jeho hmota není rozložená úplně symetricky: zůstala mírně excentrická, s těžištěm blíže k Zemi, mimo svůj geometrický střed.

Sloučením sice jádra obou těles klesla k sobě, uvnitř ale možná nesplynula zcela, asymetrie už zůstala, i na jejich úrovni. Zůstalo však také teplo a proto se plášť roztavil: Měsíc měl vulkanickou činnost. Tmavá lávová pole jsou ale jen na straně přivrácené k Zemi, na odvrácené straně je kůra silnější a láva se na povrch nedostala: Povrch je tam pokryt krátery ve světlém měsíčním materiálu.

  • Důvodem je podle různých teorií buď to, že si Země k sobě přitáhla stranu s hustším a žhavějším jádrem, uloženým v Měsíci excentricky, takže lávová pole na tenčí kůře původně mohla být kdekoli, až dodatečně se k Zemi přetočila.
  • Anebo se rotace Měsíce nejdříve svázala se Zemí, až pak se na teprve láva vylila, možná až jako důsledek působení Země: Sálavý žár ze srážkou stále ještě roztavené Země totiž mohl odpařovat lehčí materiály z přivrácené strany Měsíce, ty by se pak usazovaly na odvrácené straně. A oslabená kůra přivrácené strany pak byla místem nejsnazšího výronu lávy, když už by k takové události mělo dojít.

Nemuselo ale jít o impakt s druhým měsícem Země, ale s asteroidem či trpasličí planetou.

Vulkanismus

Dříve Měsíc rozhodně byl polotekutý, dnes je jeho plášť považován za vychladlý a ztuhlý. O jeho vulkanické aktivitě se ovšem uvažuje i v současnosti:

  • Vysvětlovalo by to sporadicky hlášené červené záblesky na jeho povrchu,
  • i možné struktury jako by po výtryscích, pravděpodobně prachu hnaného unikajícím plynem.

O stavu měsíčního jádra, o jeho tekutosti a teplotě, ale nemáme konkrétní data.

Fyzikální charakteristiky

Složení

Před více než 4,5 miliardami let pokrýval povrch Měsíce tekutý oceán magmatu. Vědci se domnívají, že jeden typ lunárních kamenů, KREEP (K – draslík, REE – rare earth elements – prvky vzácných zemin, P – fosfor) reprezentuje po chemické stránce zbytek tohoto magmatického oceánu. KREEP je vlastně směsice toho, co vědci nazývají „nekompatibilní prvky“: ty, které se nemohly zapojit do krystalické struktury, zůstaly mimo ni a vyplavaly na povrch magmatu. Pro výzkumníky je KREEP vhodným svědkem schopným podat zprávu o vulkanické historii měsíční kůry a zaznamenat frekvenci dopadů komet a jiných nebeských těles.

Měsíční kůra je složena z množství různých prvků, včetně uranu, thoria, draslíku, kyslíku, křemíku, hořčíku, železa, titanu, vápníku, hliníku a vodíku. Při bombardování kosmickým zářením vyzařuje každý prvek zpět do vesmíru vlastní radiaci jako gama paprsky. Některé prvky jako uran, thorium a draslík jsou radioaktivní a produkují gama paprsky samy o sobě. Gama paprsky jsou však, nezávisle na tom, co je způsobuje, pro každý prvek navzájem různé – všechny produkují jedinečné spektrální čáry, detekovatelné spektrometrem.

Kompletní globální zmapování Měsíce podle míry výskytu těchto prvků dosud nebylo provedeno. Některé kosmické lodě jej však uskutečnily na části Měsíce; Galileo se touto činností zabývala během svého průletu kolem Měsíce v roce 1992. Věří se, že celkové složení Měsíce je podobné jako zemské až na nedostatek těkavých prvků a železa.

Selenografie povrchu

 
Měsíční kráter Daedalus

Při popisu fyzických rysů Měsíce je problematické používání termínu geografie či jiných slov s předponou geo-, protože tato předpona ve svém latinském původu referuje k Zemi. Je tedy nelogické její použití pro mimozemská tělesa. Pro mapování Měsíce se používá pojem selenografie.

Měsíc je pokryt desítkami tisíc kráterů o průměru větším než 1 kilometr. Většina je stará stovky miliónů nebo miliardy let; nepřítomnost atmosféry, počasí a nových geologických procesů zajišťuje, že většina z nich zůstane prakticky navždy zachována.

Největší kráter na Měsíci a vskutku největší známý kráter ve sluneční soustavě tvoří pánev South Pole-Aitken. Tento kráter se nachází na odvrácené straně poblíž jižního pólu, má 2 240 km v průměru a hloubku 13 km. U některých oblastí impaktních kráterů se nacházejí dlouhá koryta Sinuous rilles.

Tmavé a relativně jednotvárné měsíční pláně se nazývají moře (latinsky mare, v množném čísle maria), protože staří astronomové věřili, že jde o moře naplněná vodou. Ve skutečnosti se jedná o rozlehlé prastaré čedičové proudy lávy, které vyplnily pánve velkých impaktních kráterů. Světlejší vrchoviny se označují jako pevniny (latinsky terra, v množném čísle terrae). Moře se nacházejí téměř výhradně na přivrácené straně Měsíce, na odvrácené je pouze několik rozptýlených fleků. Vědci se domnívají, že asymetrie v měsíční kůře je způsobena synchronizací mezi měsíční rotací a oběhem kolem Země. Tato synchronizace vystavuje odvrácenou stranu Měsíce častějším dopadům asteroidů a meteoritů než přivrácenou stranu, u níž nebyla moře překryta krátery tak rychle.

Nejsvrchnější část měsíční kůry tvoří nesoudržná kamenná vrstva rozdrcených hornin a prachu zvaná regolit. Kůra i regolit nejsou po celém Měsíci rozloženy stejnoměrně. Mocnost kůry zjištěná ze seismických měření kolísá od 5 km na přivrácené straně do 100 km na odvrácené straně. Tloušťka regolitu se pohybuje od 3 do 5 m v mořích a od 10 do 20 m na vrchovinách.

V roce 2004 zjistili vědci na základě snímků získaných sondou Clementine, že čtyři hornaté oblasti lemující 73 km široký kráter Peary na severním pólu se zdají být osvětleny po celý měsíční den. Tyto „vrcholy věčného světla“ mohou existovat díky extrémně malé výchylce měsíční osy, která na druhé straně umožňuje také existenci věčného stínu na dnech mnoha polárních kráterů. Na méně hornatém jižním pólu oblasti věčného světla nenajdeme, i když okraj kráteru Shackleton je osvětlen po 80 % měsíčního dne. Obrázky z Clementine byly získány, když severní měsíční polokoule zažívala letní období – nicméně pozorování sondy SMART-1 stejné oblasti během zimního období naznačují, že se může jednat o místa s celoročním slunečním osvětlením.

V roce 2009 naměřila americká sonda Lunar Reconnaissance Orbiter v místech trvalého stínu v kráterech okolo jižního pólu nejnižší dosud známou teplotu ve sluneční soustavě −240 °C, což je jen o přibližně 33 °C více, než je absolutní nula.

Přítomnost vody

V průběhu času je Měsíc vytrvale bombardován kometami a meteoroidy. Mnoho z těchto objektů je bohatých na vodu. Sluneční energie ji následně disociuje (rozštěpí) na její základní prvky vodík a kyslík, které okamžitě unikají do vesmíru. Navzdory tomu existuje hypotéza, že na Měsíci mohou zůstávat významné zbytky vody buďto na povrchu nebo uvězněny v kůře. Výsledky mise Clementine naznačují, že malé zmrzlé kapsy ledu (zbytky po dopadu na vodu bohatých komet) mohou být nerozmrazeny uchovány uvnitř měsíční kůry. Přestože se o kapsách uvažuje jako o malých, celkové předpokládané množství vody je dost významné – 1 km3.

Jiné vodní molekuly mohly poletovat při povrchu a být zachyceny uvnitř kráterů na měsíčních pólech. Díky velmi mírné výchylce měsíční osy, jen 1,5°, do některých z těchto hlubokých kráterů nikdy nezasvitne světlo Slunce – je v nich trvalý stín. Clementine zmapovala[6] krátery na měsíčním jižním pólu, které jsou zastíněny tímto způsobem. Je-li na Měsíci vůbec voda, pak by podle vědců měla být právě v těchto kráterech. Pokud tam je, led by mohl být těžen a rozštěpen na vodík a kyslík elektrárnami založenými na solárních panelech nebo nukleárním reaktorem. Přítomnost použitelného množství vody na Měsíci je důležitým faktorem pro osídlení Měsíce, neboť nákladnost přepravy vody (nebo vodíku a kyslíku) ze Země by podobný projekt prakticky znemožnila.

Kameny z měsíčního rovníku sesbírané astronauty z Apolla neobsahovaly žádné stopy vody. Sonda Lunar Prospector ani dřívější mapování Měsíce, organizované například Smithsonovým ústavem, nepřinesly žádný přímý důkaz měsíční vody, ledu nebo vodních par. Pozorování sondy Lunar Prospector však přesto naznačují přítomnost vodíku v oblastech stálého stínu, který by se mohl nacházet ve formě vodního ledu.

V roce 2006 uskutečněné radarové pozorování oblasti jižního pólu Měsíce přítomnost vodního ledu na dně kráterů neprokázala.

Magnetické pole

Podrobnější informace naleznete v článku Magnetické pole Měsíce.

Oproti Zemi má v současnosti Měsíc velmi slabé magnetické pole, nicméně v minulosti tomu tak být nemuselo. Zdá se, že Měsíc měl v historii magnetické pole, které bylo silnější než je současné magnetické pole Země. Toto pole bylo aktivní v době před 4,25 až 3,56 miliard let, tedy přibližně po 1 miliardu od doby vzniku Měsíce. Zatímco část měsíčního magnetismu je považována za jeho vlastní (jako pásmo měsíční kůry zvané Rima Sirsalis), je možné, že kolize s jinými nebeskými tělesy jeho magnetické vlastnosti posílila. To, zda těleso sluneční soustavy bez atmosféry jako Měsíc může získat magnetismus díky dopadům komet a asteroidů, je přetrvávající vědeckou otázkou. Magnetická měření mohou poskytnout také informace o velikosti a elektrické vodivosti měsíčního jádra – tyto výsledky by vědcům pomohly lépe porozumět původu Měsíce. Například, pokud by se ukázalo, že jádro obsahuje více magnetických prvků (jako je železo) než Země, ubralo by to teorii velkého impaktu na věrohodnosti (i když jsou zde alternativní vysvětlení, podle kterých by měsíční kůra měla také obsahovat méně železa).

Atmosféra

Měsíc má relativně nevýznamnou a řídkou atmosféru. Atomy v takto řídké atmosféře se vzájemně téměř nesrážejí (jejich střední volná dráha je srovnatelná s velikostí Měsíce). Jedním ze zdrojů této atmosféry je odplynování – uvolňování plynů, například radonu, který pochází hluboko z měsíčního nitra. Dalším důležitým zdrojem plynů je sluneční vítr, který je rychle zachycován měsíční gravitací.

Zatmění

Podrobnější informace naleznete v článku Zatmění Měsíce.
 
Zatmění Měsíce

Ač jde vskutku jen o shodu okolností, úhlové průměry Měsíce a Slunce viděné ze Země jsou v rámci svých změn schopny se navzájem překrývat, takže je možné jak úplné tak i prstencové zatmění Slunce. Při úplném zatmění Měsíc kompletně zakrývá sluneční disk a sluneční koróna je vidět pouhým okem.

Protože se vzdálenost mezi Měsícem a Zemí během času velmi pomalu zvětšuje, úhlový průměr Měsíce se zmenšuje. To znamená, že před několika milióny let při slunečním zatmění Měsíc Slunce vždycky úplně zakryl a nemohlo nastat žádné prstencové zatmění. Na druhou stranu, za několik miliónů let už nebude Měsíc schopen Slunce úplně zakrýt a žádná úplná zatmění už nebudou nastávat.

Zatmění nastávají jen když jsou Slunce, Země a Měsíc v jedné přímce. Sluneční zatmění mohou nastat jen pokud je Měsíc v novu; zatmění Měsíce jen je-li v úplňku.

Pozorování Měsíce

Podrobnější informace naleznete v článku Měsíční fáze.
 
Měsíční povrch

Měsíc (a také Slunce) se zdají být většími, když se přiblíží k horizontu. Je to čistě psychologický efekt, viz Měsíční iluze. Úhlový průměr Měsíce ze Země je asi půl stupně.

Různé světleji a tmavěji zabarvené oblasti (především měsíční moře) tvoří vzor viděný různými kulturami jako Muž na Měsíci, králík a bizon i jinak. Krátery a horské hřbety také patří mezi nápadné měsíční rysy.

Během nejjasnějšího úplňku může mít Měsíc magnitudu asi −12,6. Pro srovnání, Slunce má magnitudu −26,8.

Měsíc je nejjasnější v noci, ale občas je možné ho vidět i ve dne.

Pro libovolné místo na Zemi kolísá největší výška Měsíce ve dne ve stejných mezích jako největší výška Slunce a závisí na ročním období a měsíční fázi. Například v zimě putuje Měsíc nejvýše, pokud je v úplňku, a v úplňku putuje nejvýše právě v zimě.

Měsíc vystupuje nejvýše mj. i na jaře v první čtvrti (pobyt na obloze cca 10:00 až 2:00 násl. dne) a na podzim v poslední čtvrti (22:00 až 14:00 násl. dne), nejníže mj. i na jaře v poslední čtvrti (2:00 až 10:00) a na podzim v první čtvrti (14:00 až 22:00).

Měsíc vychází a zapadá díky svému oběhu kolem Země cca o 50 minut později než předchozí den. To je průměrná hodnota, neboť zpožďování kolísá v intervalu cca 20–80 minut. O kolik je menší zpoždění východu, o tolik je větší zpoždění západu a naopak. Průměrné hodnoty nastávají, pokud Měsíc dosahuje své nejsevernější nebo nejjižnější deklinace. Pro severní polokouli jsou nejmenší rozdíly mezi východy (a největší mezi západy) vždy, když Měsíc prochází v blízkosti jarního bodu. V něm dráha Měsíce přechází z jihu na sever a při východu svírá s obzorem menší úhel než nebeský rovník a při západu větší úhel. To nastává při první čtvrti v prosinci, úplňku v září a poslední čtvrti v červnu. Není-li Měsíc v úplňku, je možno spatřit další průvodní jev – Měsíc je spíše stojatý při východu a ležatý při západu. Tím pádem je také velmi obtížné sledovat „starý Měsíc“ v časném jaře, neboť se utápí příliš nízko na východní obloze, jež začíná světlat. Zato jde o nejlepší podmínky pro pozorování „mladého Měsíce“ na večerní obloze. Opačné podmínky nastávají při průchodu Měsíce kolem podzimního bodu, kde jeho dráha přechází ze severu na jih. Rozdíl mezi východy je maximální (velký úhel dráhy k obzoru) a mezi západy je minimální (malý úhel dráhy k obzoru). To nastává při poslední čtvrti v prosinci, úplňku v březnu a první čtvrti v červnu. Krom toho to umožňuje snadné pozorování „starého Měsíce“ v časném podzimu. Naopak je v podzimních večerech obtížné sledovat „mladý Měsíc“ (stejně jako „starý Měsíc“ na jaře).

Pokud je pozorovatelná jen malá osvětlená část Měsíce, bývá při jasné obloze viditelný i jeho neosvětlený díl, neboť jej ozařuje Země, která je naopak vůči Měsíci téměř celá osvětlená („v úplňku“). Jev se nazývá popelavý svit Měsíce a prvním, kdo jej správně vyložil, zřejmě byl Leonardo da Vinci.

Průzkum Měsíce

Související informace naleznete také v článku Odvrácená strana Měsíce.

5 000 let starý otesaný kámen v irském Knowth asi reprezentuje měsíc a je-li tomu tak, jde o nejstarší dosud objevené zobrazení. Ve středověku, ještě před objevením dalekohledu, již někteří lidé uznali Měsíc za sféru, i když si mysleli, že je „dokonale hladký“.

 
Kráter Tycho na zemském Měsíci

Leonardo da Vinci v Leicesteerském kodexu (napsán mezi 1506 a 1510), poprvé prohlásil, že Měsíc je hmotné těleso těžší než vzduch; současně správně vysvětlil jev tzv. popelavého svitu jako odraz záře Země od měsíčního povrchu. V roce 1609 nakreslil Galileo Galilei do své knihy Sidereus Nuncius jednu ze svých prvních kreseb Měsíce pozorovaného dalekohledem a poznamenal, že není hladký, ale má krátery. Později v 17. století nakreslili Giovanni Battista Riccioli a Francesco Maria Grimaldi mapu Měsíce a pojmenovali řadu kráterů jmény, která známe dodnes. Na mapách se temné části měsíčního povrchu nazývají „moře“ (latinsky mare, v množném čísle maria) a světlejší části jsou pevniny (latinsky terra, v množném čísle terrae).

Možnost existence vegetace na Měsíci či dokonce osídlení „selenity“ byla seriózně zmiňována některými významnými astronomy až do prvních desetiletí 19. století. Ještě v roce 1835 se řada lidí nechala napálit sérií článků v deníku New York Sun o smyšleném objevu exotických zvířat žijících na Měsíci. Naproti tomu prakticky ve stejné době (během let 1834–1836) publikovali Wilhelm Beer a Johann Heinrich Mädler své čtyřdílné kartografické dílo Mappa Selenographica a v roce 1837 knihu Der Mond, která solidním způsobem zdůvodnila závěr, že Měsíc nemá žádné vodní plochy ani patrnou atmosféru. Spornou otázkou zůstávalo, zda rysy Měsíce mohou podléhat změnám. Někteří pozorovatelé prohlašovali, že jisté malé krátery se objevují a zase mizí, ve 20. století se však zjistilo, že jde o omyly, vzniklé pravděpodobně odlišnými světelnými podmínkami nebo nepřesnostmi ve starých nákresech. Na druhou stranu dnes víme, že občas dochází k jevu odplynování.

Během nacistického období v Německu prosazovali nacističtí vůdci teorii Welteislehre, která prohlašovala, že Měsíc je tvořen pevným ledem.

První člověkem vyrobený předmět, který dosáhl Měsíce, byla automatická sovětská sonda Luna 2, která na něj dopadla 4. září 1959 ve 21:02:24 Z. Odvrácená strana Měsíce byla zcela neznámá až do průletu sovětské sondy Luna 3 v roce 1959. Její rozsáhlé zmapování bylo provedeno v rámci amerického programu Lunar Orbiter v 60. letech 20. století.

 
Kráter Ptolemaeus zabírá levou spodní část snímku. Uvnitř leží malý kráter Ammonius. Kráter napravo uprostřed je Herschel. Nahoře je vidět lunární modul Apollo 12, který se připravuje k sestupu.
 
Astronaut z Apolla 17 Harrison Schmitt stojí vedle balvanu na Taurus-Littrow během třetí EVA

Luna 9 byla první sondou, která měkce přistála na Měsíci a 3. února 1966 přenesla obrázky měsíčního povrchu. Prvním umělým satelitem Měsíce byla sovětská sonda Luna 10 (odstartovala 31. března 1966). Členové posádky Apolla 8, Frank Borman, James Lovell a William Anders, se 24. prosince 1968 stali prvními lidmi, kteří na vlastní oči viděli odvrácenou stranu Měsíce. Lidé poprvé přistáli na Měsíci 20. července 1969, čímž vyvrcholil studenou válkou inspirovaný vesmírný závod mezi Sovětským svazem a Spojenými státy americkými. Prvním mužem kráčejícím po měsíčním povrchu byl Neil Armstrong, velitel americké mise Apollo 11. Posledním člověkem, který stál na Měsíci, byl Eugene Cernan, který v rámci mise Apollo 17 kráčel po Měsíci v prosinci 1972.

Související informace naleznete také v článku Seznam návštěvníků Měsíce.
 
Posádka Apolla 11 nechala na Měsíci 23 × 18cm destičku z nerez oceli na oslavu přistání, která je schopna přinést základní informace o návštěvě jakýmkoliv jiným bytostem, které by ji mohly vidět. Nápis na ní praví: Zde se lidé z planety Země poprvé dotkli nohama Měsíce. Červenec, LP 1969. Přišli jsme v míru jménem celého lidstva. Destička zobrazuje dvě strany planety Země a je podepsána třemi astronauty a prezidentem USA Richardem Nixonem.

Měsíční vzorky přivezené na Zemi pocházejí z šesti misí s lidskou posádkou a ze tří misí Luna (číslo 16, 20 a 24). Prezident Nixon vzorky rozdělil a daroval všem státům světa.

V únoru 2004 se americký prezident George W. Bush přihlásil k plánu na obnovení letů k Měsíci s posádkou do roku 2020. V září 2005 organizace NASA upřesnila tyto plány a oznámila jako cílové datum nového přistání lidí na Měsíci rok 2018. Tomu by měla předcházet sonda Lunar Reconnaissance Orbiter. Pro dopravu astronautů na Měsíc je vyvíjena kosmická loď Orion. Evropská kosmická agentura stejně jako Čínská lidová republika, Japonsko a Indie mají také plán na brzké vypuštění sond na průzkum Měsíce. Evropská sonda Smart 1 odstartovala 27. září 2003 a vstoupila na měsíční oběžnou dráhu 15. listopadu 2004. Sledovala měsíční povrch s cílem vytvářet jeho rentgenovou mapu. Sonda ukončila svou dráhu plánovaným dopadem na povrch Měsíce 3. září 2006 v 5:42:22 UTC. Pádem se vytvořil oblak hornin zasahující do výšky několika kilometrů, který pak vědci zkoumali spektroskopicky s cílem studovat složení povrchu Měsíce. Čína deklarovala ambiciózní plány na výzkum Měsíce a zkoumání vhodných nalezišť pro těžbu na Měsíci, zvláště hledání izotopu hélium 3 využitelného jako energetický zdroj na Zemi. Japonsko a Indie se také chystají k Měsíci. Japonci již načrtli plány svých nadcházejících misí k našemu sousedovi: Lunar-A[17] a Selene. Japonskou vesmírnou agenturou (JAXA) je dokonce plánována obydlená lunární základna. Prvním pokusem Indie byl automatický orbitální satelit Čandraján-1.

Mezi další více či méně úspěšné mise patří: Program Pioneer (1958–1959), Program Ranger (1961–1965), Program Zond (1965–1970), Program Surveyor (1966–1968), Program Lunar Orbiter (1966–1968), Program Lunar Explorer (1967–1973), Hiten (1990–1993), Clementine (1994), Lunar Prospector (1998–1999).

Pokud by se astronaut nacházející se v raketě na povrchu Měsíce chtěl odpoutat jak od Měsíce tak i od Země, musel by dosáhnout únikové rychlosti o velikosti druhé odmocniny součtu čtverců jednotlivých únikových rychlostí – 2,4 km/s (od Měsíce) a 1,5 km/s (od Země) dají celkově 2,8 km/s. Využije-li se tedy orbitální rychlost 1,1 km/s a urychlí-li se o 2,4 km/s, je to dohromady dost nejen k opuštění Měsíce, ale také k opuštění Země.

Zajímavosti

  • Dříve si vědci mysleli, že Měsíc je uvnitř zcela vychladlý. Ale experimenty na teplo prokázaly, že hlubší měsíční vrstvy musejí být rozžhavené, neboť teplo proudí zevnitř směrem ven
  • Měsíční nitro zdaleka neprodukuje takové množství tepla jako Země.
  • Podobně jako Země se i Měsíc skládá z lehké kůry, pláště a zhuštěného jádra.
  • Průměr měsíčního jádra je asi 700 km, jako zemské jádro je zcela nebo částečně kapalné.
  • Podle nových poznatků NASA je vnitřní jádro Měsíce pevné, bohaté na železo s poloměrem 240 km, vnější jádro je tekuté o poloměru 330 km. Od zemského jádra ho odlišuje další, částečně roztavená hraniční vrstva o poloměru 480 km.
  • Měsíc nadále chladne, tím se smršťuje, což doprovázejí měsícotřesení.
  • Měsíc se k Zemi nepřibližuje, ale naopak se vzdaluje (cca o 4 cm ročně).
  • Na konci období dinosaurů (zhruba před 66 miliony let) už byl na pohled prakticky stejně velký jako dnes.
  • Osvětlení Země měsíčním úplňkem (cca 0,25 luxu) je asi 400 000× nižší než osvětlení dané Sluncem v nadhlavníku.
  • Při návštěvě Apolla 11 zazněla na Měsíci magnetofonová nahrávka Dvořákovy Novosvětské symfonie.
  • V roce 1971 umístila posádka Apolla 15 na povrch Měsíce asi 8 cm velkou hliníkovou sošku astronauta ve skafandru, zvanou Fallen Astronaut, od belgického umělce Paula Van Hoeydoncka spolu s plaketou, na níž jsou uvedena jména osmi amerických astronautů a šesti sovětských kosmonautů, kteří zahynuli v souvislosti s kosmickým výzkumem.
1280px-Moons_of_solar_system_cs.jpg

Měsíc 

Měsíc, též přirozený satelit či přirozená družice (zastarale trabant nebo souputník) je kosmické těleso přirozeného původu pohybující se po oběžné dráze kolem jiného (většího) vesmírného tělesa, kterým může být planeta, trpasličí planeta nebo planetka.

V naší Sluneční soustavě bylo dosud objeveno přinejmenším 182 měsíců (173 obíhá kolem planet, 9 kolem trpasličích planet) a předpokládá se, že také kolem planet jiných hvězd obíhá mnoho dalších. Typicky velcí plynní obři mívají rozsáhlý systém měsíců. Merkur a Venuše nemají žádné měsíce, Země jeden velký měsíc, Mars dva drobné měsíce.

Pluto – nyní již zařazované mezi trpasličí planety – má velkého souputníka zvaného Charon (takže systém Pluto–Charon je občas považován za dvojplanetu) a čtyři malé měsíce.

Původ

U většiny měsíců se předpokládá, že se zformovaly v počátcích vývoje sluneční soustavy v téže části smršťujícího se protoplanetárního disku jako jejich planeta. Z tohoto standardního modelu formování měsíců však existuje mnoho známých nebo teoreticky předpovězených výjimek a variant. O některých měsících se soudí, že jde o zachycené cizí objekty (např. asteroidy), jindy by mohlo jít o fragmenty větších měsíců rozdrcených mohutnými srážkami nebo (v případě pozemského Měsíce) část planety samotné vyvržená na oběžnou dráhu mohutnou srážkou. Jelikož je většina měsíců známá jen prostřednictvím vzdálených pozorování pomocí sond nebo dalekohledů, teorie o jejich původu jsou stále nejisté.

Fyzikální charakteristiky

Většina měsíců ve Sluneční soustavě má vzhledem ke své planetě vázanou rotaci; otáčí se k ní tedy stále stejnou stranou. Výjimkou naopak je Saturnův měsíc Hyperion, který rotuje chaoticky díky působení vnějších vlivů.

Žádný měsíc nemá své vlastní měsíce, protože slapové vlivy planety způsobují v oběžné dráze kolem nich nestability. Na druhé straně má několik měsíců průvodce ve svých Lagrangeových bodech (například Saturnovy měsíce Tethys a Dione).

Objev Idina měsíce Dactyla naznačil, že také některé planetky mohou mít měsíce. Některé z nich jako Antiope jsou dvojité asteroidy skládající se ze dvou téměř stejných těles. Doposud bylo objeveno 62 potvrzených nebo předpokládaných případů asteroidů s průvodci (květen 2005).

Měsíce ve sluneční soustavě

Největšími měsíci ve sluneční soustavě (většími než 3000 km v průměru) jsou pozemský Měsíc, Jupiterovy galileovské měsíce Io, Europa, Ganymed a Callisto, Saturnův měsíc Titan a Neptunem zachycený měsíc Triton. Menší měsíce najdete u příslušných planet.

Srovnávací tabulka řadící měsíce ve sluneční soustavě podle jejich průměru, obsahující také sloupec pro důležité planetky, planety a objekty Kuiperova pásu.

 
Eulerův diagram s různými typy těles sluneční soustavy
Průměr (km) Země Mars Jupiter Saturn Uran Neptun Pluto Jiná tělesa
5000-6000     Ganymed Titan        
4000-5000     Callisto         Merkur
3000-4000 Měsíc  

Io
Europa

         
2000-3000           Triton  

Pluto
Eris

1000-2000      

Rhea
Japetus
Dione
Tethys

Titania
Oberon
Umbriel
Ariel

   

Makemake
Haumea
90377 Sedna
50000 Quaoar

100-1000     Himalia

Amalthea

Enceladus Mimas
Hyperion
Phoebe
Janus
Epimetheus
Prometheus

Miranda
Sycorax
Puck
Portia

Proteus
Nereida
Larissa
Galatea
Despina


Charon

1 Ceres
2 Pallas
3 Juno
4 Vesta
90482 Orcus
20000 Varuna
28978 Ixion
(a mnoho jiných)

50-100    

Thebe
Elara
Pasiphae

Pandora

Caliban
Julie
Belinda
Cressida
Rosalinda
Desdemona

 

Naiada
S/2002 N 4

 

Nix
Hydra

 

(Příliš mnoho pro výčet)

10-50   Phobos

Deimos

Carme

Metis
Sinope
Lysithea
Ananke
Leda
Adrastea

Siarnaq

Atlas
Helene
Albiorix
Telesto
Pan
Paaliaq
Calypso
Ymir
Kiviuq
Tarvos
Ijiraq

Ofelie

Kordelie
Setebos
Prospero
Stephano
S/1986 U 10
S/2001 U 2
S/2001 U 3
S/2003 U 3
Trinculo
S/2003 U 1
S/2003 U 2

S/2002 N1

S/2002 N 2
S/2002 N 3
S/2003 N 1

Kerberos

Styx

(Příliš mnoho pro výčet)
méně než 10     Přinejmenším 65,
podívejte se na
Jupiterovy
měsíce.
Erriapo

Narvi
Skadi
Mundilfari
Suttung
Thrym
Pallene (S/2004 S 2)
Methone (S/2004 S 1)

      (Příliš mnoho pro výčet)

Kromě měsíců různých planet existuje ještě 38 potvrzených a 24 předpokládaných asteroidních měsíců (stav k 10. květnu 2005). Pak jsou také exoměsíce.

callisto.jpg

Callisto

Callisto, též Jupiter IV, je měsíc Jupiteru. Náleží k tzv. Galileovým měsícům, objevil ho Galileo Galilei v roce 1610.Callisto je druhým největším z Jupiterových měsíců a třetím největším měsícem ve sluneční soustavě po Jupiterově Ganymedu a Saturnově Titanu. Callisto má průměr 4 820 km, takže dosahuje přibližně 99 % velikosti planety Merkur, ale pouze asi třetiny jeho hmotnosti. Obíhá jako čtvrtý nejvzdálenější měsíc z Galileových měsíců se střední vzdáleností asi 1 880 000 km. Oproti Io, Europě a Ganymedu se nepodílí na orbitální rezonanci zmiňovaných měsíců a slapové působení Jupitera je už tak slabé, že nezpůsobuje významný ohřev měsíce. Měsíc má s Jupiterem vázanou rotaci, takže neustále směřuje k planetě stejnou stranou. Jelikož obíhá daleko od Jupiteru, je jeho povrch méně ovlivňován působením jeho magnetosféry než v případě vnitřních měsíců.

Těleso je tvořeno horninami a ledem v přibližně stejném množství. Průměrná hustota měsíce dosahuje 1,83 g/cm3. Spektroskopická měření naznačují, že se na povrchu nachází vodní led, oxid uhličitý, křemičitany a organické látky. Jeho kůra je silná až 150 km. Pod ledovou kůrou měsíce se nachází v hloubce okolo 100 km zřejmě relativně mělký oceán slané vody a pod ním již jen nediferencované či jen částečně diferencované jádro složené z křemičitanů.

Povrch Callisto je silně rozryt impaktními krátery a je tudíž velice starý. Nevykazuje žádné stopy podpovrchových procesů jako je desková tektonika či vulkanismus a tak se předpokládá, že jeho povrch byl zcela zformován pouze dopady jiných těles. Výrazné povrchové útvary tvoří četné prstencové struktury, impaktní krátery různých tvarů a pásy sekundárních kráterů a jizev, hřebenů a uloženin. Při pohledu na měsíc z menší vzdálenosti je rozeznatelný členitý povrch tvořený malými světlými zmrzlými depozity nacházejícími se na vrcholcích vyvýšenin. Tyto vyvýšeniny jsou obklopeny hladkou vrstvou tmavého materiálu. Předpokládá se, že je to výsledek degradace malých útvarů vlivem sublimace, což podporuje absence malých impaktních kráterů a přítomnost množství malých pahorků, které pravděpodobně představují jejich zbytky.  Absolutní stáří povrchu není známo.

Kolem Callisto se nachází velice slabá atmosféra tvořená oxidem uhličitým  a pravděpodobně také molekulárním kyslíkem  a nad ní pak poměrně intenzivní ionosféra. Předpokládá se, že měsíc vznikl pomalou akrecí z disku prachu a plynu, který obklopoval Jupiter po jeho vzniku. Protože akrece probíhala pomalu a rovněž slapové ohřívání bylo velmi malé, neměl Callisto dostatek tepla, aby mohla proběhnout jeho vnitřní diferenciace. Pomalá konvekce uvnitř Callisto, která započala krátce po vzniku měsíce, vedla k částečné diferenciaci a pravděpodobně i ke zformování podpovrchového oceánu v hloubce okolo 100–150 km a malého kamenitého jádra.

Pravděpodobná přítomnost podpovrchového oceánu nechává otevřenou možnost, že by Callisto mohl hostit potenciální mimozemský život. Nicméně podmínky pro jeho vznik jsou méně přívětivé než v případě sousední Europy.  Měsíc zkoumaly sondy Pioneer 10, Pioneer 11, Galileo a Cassini. Kvůli nízké míře radiace na povrchu měsíce se dlouho uvažovalo o Callisto jako o nejvhodnějším místě pro případnou lidskou základnu pro výzkum Jupiterovy soustavy. Teplota na jeho povrchu se pohybuje od -190 °C do -130 °C.

Objevení a pojmenování

Callisto byl objeven Galileem v lednu 1610 společně s dalšími třemi měsíci Jupiteru: Ganymedem, Io a Europou. Pojmenován byl dle řecké mytologie po jedné z nespočtu milenek Dia Kallistó (Καλλιστώ), což byla nymfa spojovaná s bohyní lovu Artemis. Jméno navrhl Simon Marius, který byl s Galileem ve sporu ohledně připsání prvenství v objevení měsíců. Marius připsal nápad Johnanu Keplerovi. Nicméně se pojmenování Callisto pro měsíc po dlouhou dobu neujalo a měsíc byl označován jako „Jupiter IV“ či „čtvrtý měsíc Jupiteru“ značící jeho pořadí od Jupiteru, jméno se zase začalo používat až v polovině 20. století, kdy bylo objeveno velké množství dalších měsíců.

Oběžná dráha a rotace

 
Callisto (dole vlevo), Jupiter (vpravo nahoře) a Europa (vlevo dole pod Velkou rudou skvrnou), snímek pořídila sonda Cassini.

Callisto je nejvzdálenější měsíc ze čtyř Galileových měsíců obíhajících kolem Jupiteru. Jupiter obíhá přibližně ve vzdálenosti 1 880 000 km (odpovídá 26,3 poloměrům Jupiteru), což je značně více než u třetího Galileova měsíce Ganymedu, který obíhá ve vzdálenosti 1 070 000 km. Důsledkem této vzdálenosti je to, že se Callisto nepodílí na orbitální rezonanci se třemi dalšími Galileovými měsíci a pravděpodobně se na ní nepodílel ani dříve.

Jako u většiny dalších pravidelných planetárních měsíců je i rotace Callisto vázaná. Délka dne je tak na povrchu Callisto stejně dlouhá jako doba oběhu, tedy přibližně 16,7 pozemského dne. Jeho oběžná dráha je mírně excentrická a ukloněná k Jupiterovu rovníku s orbitální excentricitou a inklinací měnící se kvazi-periodicky vlivem slunečních a planetárních gravitačních perturbací v řádu století. Rozsah změn je mezi 0,0072–0,0076 respektive 0,20–0,60°. Tyto orbitální variace způsobuji sklony v rotační ose (úhel mezi rotační a oběžnou osou) mezi 0,4 až 1,6°.

Dynamická izolace Callisto znamená, že měsíc nebyl nikdy znatelně zahřát slapovým teplem, což mělo důležité důsledky pro jeho vnitřní stavbu a evoluci. Jeho vzdálenost od Jupiteru taktéž znamená, že tok nabitých částic z planetární magnetosféry na měsíční povrch je relativně nízký, až 300 krát méně než je tomu například u Europy. Proto, na rozdíl od dalších Galileových měsíců, mělo ozáření nabitými částicemi relativně malý vliv na povrch Callisto  Hladina radiace na povrchu měsíce odpovídá přibližně 0,01 rem (0,1 mSv) za den.

Fyzikální charakteristika

Složení

 
Spektrum blízké infračervenému světlu tmavých krátery posetých plání (červený) naznačuje relativně nízkou přítomnost vody (mezi 1 až 2 mikrony) a více horninového materiálu než v impaktních nížinách (Asgard struktura, modrá).

Průměrná hustota Callisto, 1,83 g/cm3,naznačuje složení z kamenného materiálu a vodního ledu v přibližně stejném množství s menším zastoupením nestálých ledů jako například čpavek. Hmotnostní zastoupení ledů se pohybuje mezi 49 až 55 %. Přesné složení horninového pláště není známo, ale je podobné složení chondritů typu L či LL, které se od chondritů typu H liší především menším zastoupením železa, vyskytujícím se převážně ve formě oxidů a jen v malé míře ve formě železa metalického. V případě Callisto je hmotnostní poměr železa vůči křemičitanům 0,9 ku 1,3, u Slunce je tento poměr 1:8.

Povrchové albedo Callisto je okolo 20 %. Složení jeho povrchu je pravděpodobně velmi podobné jeho celkovému složení. Infračervená spektroskopie odhalila přítomnost absorpčních čar vodního ledu na vlnových délkách 1,04, 1,25, 1,5, 2,0 a 3,0 mikrometru. Vodní led se zdá být na povrchu Callisto všudypřítomným, s celkovým podílem asi 25–50 %. Analýza snímků v infračerveném a ultrafialovém spektru získaných sondou Galileo a pozorování provedená ze Země odhalila také různé neledové materiály: hořčíkové a železité ložisko hydratovaných křemičitanů, oxid uhličitý, oxid siřičitý  a možná amoniak a různé organické sloučeniny. Spektrální data ukazují, že měsíční povrch je v malém měřítku extrémně různorodý. Malé kousky ledu z čisté vody jsou smíšeny s kousky směsi ledu a kamení, na které navazují tmavé oblasti složené z neledového materiálu.

Povrch měsíce je asymetrický; strana přivrácená k Jupiteru je tmavší než strana odvrácená. U všech ostatních Galileových měsíců je situace obrácená, tedy přivrácená strana je světlejší než odvrácená. Zdá se, že odvrácená strana Callisto je obohacena oxidem uhličitým, kdežto přivrácená strana obsahuje více oxidu siřičitého. Mnoho čerstvých impaktních kráterů na povrchu taktéž ukazuje známky toho, že jsou obohaceny oxidem uhličitým. Celkově se odhaduje, že chemické složení povrchu, hlavně tmavých oblastí, by mohlo být podobné složení asteroidů typu D, jejichž povrch je tvořen uhlíkatým materiálem.

Stavba

 
Model Callistovo vnitřní struktury ukazuje povrchovou ledovou vrstvu, pravděpodobně vrstvu tekuté vody a ledovo-kamennou vnitřní stavbu.

Povrch Callisto posetý krátery leží na studené, ztuhlé a ledové litosféře, jejíž mocnost je mezi 80 až 150 km. Pravděpodobný slaný oceán se nachází mezi 50 až 200 km hluboko pod povrchovou kůrou, jak naznačují studie magnetického pole okolo Jupiteru a jeho měsíců. Zjistilo se, že Callisto reaguje na proměnné magnetické pole Jupiteru jako ideálně vodivá koule; to znamená, že pole nemůže proniknout dovnitř měsíce, což nabízí možnost přítomnosti vrstvy tvořené vysoce vodivou tekutinou o tloušťce nejméně 10 km. Existence oceánu se jeví více pravděpodobná, pokud voda obsahuje malé množství čpavku či jiné nemrznoucí směsi a to v zastoupení minimálně 5 hmotnostních procent. V tomto případě by oceán mohl být 250 až 300 km hluboký.Pokud by na měsíci oceán neexistoval, ledová kůra by byla pravděpodobně tlustší a dosahovala by mocnosti okolo 300 km.

Pod litosférou a případným oceánem není vnitřní stavba Callisto zcela jednotvárná, ale ani výrazně rozdílná. Údaje pořízené sondou Galileo (zvláště bezrozměrný moment setrvačnosti – 0.3549 ± 0.0042 – určený během těsných průletů kolem měsíce) naznačují, že vnitřek měsíce je tvořen stlačenými horninami a směsí ledů s narůstajícím obsahem hornin se zvyšující se hloubkou způsobeným částečným usazováním jednotlivých složek.Jinými slovy, Callisto je jen částečně diferenciovaný. Hustota a moment setrvačnosti jsou ve shodě s existencí malého silikátového jádra uprostřed měsíce. Poloměr takového jádra by nemohl překročit 600 km a jeho hustota by ležela mezi 3,1–3,6 g/cm3.

Povrchové útvary

Související informace naleznete také v článku Seznam geologických útvarů na Callisto.
 
Snímek sondy Galileo ukazuje krátery posetou planinu pro ilustraci hladkého povrchu měsíce

Prastarý povrch Callisto je jedním z krátery nejvíce posetých povrchů ve sluneční soustavě. Ve skutečnosti četnost impaktních kráterů na povrchu je blízko nasycení, vznik nového kráteru by vedl k tomu, že starší kráter by byl erodován. Morfologie povrchu je poměrně snadná, jelikož se na povrchu nenacházejí žádné hory, sopky a ani tektonické útvary vzniklé endogenními pochody uvnitř měsíce. Impaktní krátery a několik prstencových struktur společně s doprovodnými trhlinami, srázy a usazeným materiálem tvoří jediné velké útvary, které se na povrchu nacházejí.

Povrch Callisto se dá rozdělit na několik geologicky rozdílných jednotek: pláně poseté impaktními krátery, světlé pláně, jasné a tmavé hladké pláně a množství jednotek spojených s několika jednotlivými prstencovými strukturami a impaktními krátery. Pláně poseté impaktními krátery tvoří většinu povrchu a představují starou litosféru tvořenou směsí ledu a horninového materiálu. Světlé pláně tvoří jasné impaktní krátery jako Burr a Lofn, stejně tak i zbytky téměř smazaných kráterů a centrální oblasti prstencových struktur.  Věří se, že světlé pláně vznikly jako výsledek depozice ledových částic z impaktů. Světlé, hladké planiny tvoří malou část povrchu Callisto. Nacházejí se v okolí hřbetů a údolí spojených se vznikem kráterů Valhalla a Asgard a jako izolovaná místa v krátery posetých planinách. Věřilo se, že jsou spojeny s endogenní aktivitou, ale snímky ve vysokém rozlišení ze sondy Galileo ukázaly, že světlé, hladké planiny korelují se silně popraskaným a kopcovitým terénem a neukazují žádné známky přetvoření povrchu. Snímky ze sondy Galileo odhalily malé, tmavé, hladké oblasti s obecnou velikostí méně než 10 000 km2, které vypadají, jako by obepínaly okolní terén. Pravděpodobně by se mohlo jednat o depozity spojené s kryovulkanismem. Obě skupiny, jak světlé tak i různorodé hladké planiny, jsou mladší a méně poseté krátery než okolní krátery poseté planiny.

 
Impaktní kráter Hár s centrálním vrcholkem. Paprsky sekundárních kráterů pocházející od mladšího impaktu, který vytvořil kráter Tindr v pravém horním rohu.

Průměr impaktních kráterů sahá od 0,1 km, což je spodní hranice rozlišení pořízených snímků, až přes 100 km bez započítání prstencových struktur. Malé krátery s průměrem menším než 5 km mají jednoduše mísovitý tvar či rovné dno. Krátery větší než 5 km a menší než 40 km mají vyvinutý centrální vrcholek. Větší impaktní struktury s průměrem 25 až 100 km mají centrální depresi namísto vrcholku jako například kráter Tindr. Větší krátery s průměrem přes 60 km mohou mít centrální dóm, který vzniká jako výsledek tektonického výzdvihu centrální části kráteru po dopadu  jako v případě kráterů Doh a Hár. Malé množství velmi velkých kráterů přesahujících 100 km a světlé impaktní krátery ukazují anomální geometrii centrálního dómu. Krátery na Callisto jsou obvykle mělčí než obdobné krátery na Měsíci.

 
Snímek pořízený sondou Voyager 1 ukazuje kráter Valhalla, prstencový impaktní útvar s průměrem 3800 km

Největšími impaktními útvary na povrchu Callisto jsou mnohočetné prstencové pánve. Dvě jsou enormní. Kráter Valhalla je největší, má světlejší centrální oblast o průměru 600 km a prstence sahající až do vzdálenosti 1 800 km od centra kráteru.  Druhý největší kráter je kráter Asgard, který má v průměru 1 600 km. Prstencové struktury vznikly pravděpodobně jako důsledek podopadových deformací projevujících se soustředným popraskáním litosféry ležící na vrstvě měkkého či tekutého materiálu, pravděpodobně oceánu.  Dalšími útvary jsou tzv. Catenae, například Gomul Catena, dlouhé řetězy impaktních kráterů ležící v řadě napříč povrchem. Vznikly pravděpodobně dopadem objektů, které byly slapovými silami při blízkém průletu kolem Jupiteru roztrhány a následně dopadly na povrch Callisto, nebo by se mohlo jednat o pozůstatky dopadu tělesa pod nízkým úhlem.  Historickým případem rozpadu tělesa vlivem gravitace Jupiteru byl rozpad komety Shoemaker-Levy 9, která následně po rozpadu narazila do Jupiteru. Jak je zmíněno výše, malé oblasti tvořené čistým vodním ledem s vysokým albedem okolo 80 % se nacházejí na povrchu Callisto obklopené mnohem tmavším materiálem. Snímky ve vysokém rozlišení pořízené sondou Galileo ukázaly, že tyto světlejší oblasti jsou umístěny hlavně na vyvýšených místech povrchu jako jsou okraje kráterů, srázy, hřbety a pahorky. Předpokládá se, že jsou tvořeny tenkou vrstvou zmrzlých vodních depozitů. Tmavý materiál obvykle leží v nížinách a obklopuje a částečně přikrývá světlejší útvary. Často vyplňuje dna impaktních kráterů větších než 5 km a mezikráterové deprese.

 
Dva sesuvy dlouhé 3 až 3,5 km jsou viditelné v pravé části snímku na dnu dvou velkých impaktních kráterů

V rozlišení menším než kilometr se jeví povrch Callisto více degradován než povrch ostatních ledových měsíců ze skupiny Galileových měsíců.  Typicky na povrchu chybí malé impaktní krátery s průměrem menším než 1 km ve srovnání například s tmavými planinami na povrchu Ganymedu. Místo malých impaktních kráterů jsou téměř všudypřítomnými povrchovými útvary malé pahorky a deprese.  Předpokládá se, že pahorky představují pozůstatky okrajů impaktních kráterů, které byly erodovány zatím neznámým mechanismem. Nejpravděpodobnější se jeví pomalý proces sublimace ledu, což je umožněno teplotou 156 K, které Callisto dosáhne v subsolárním bodu.Takováto sublimace vody či jiných těkavých složek ze špinavého ledu tvořícího podloží způsobí jeho rozklad. Materiál neobsahující led zůstává na povrchu a tvoří úlomkové laviny, které se sesouvají po svazích kráterů. Takovéto laviny jsou často pozorovány poblíž a uvnitř impaktních kráterů Stěny kráterů jsou příležitostně přerušeny malými stružkami (anglicky nazývanými gullies), které jsou známé z povrchu Marsu.V hypotéze sublimace ledu je pak nízko ležící tmavý materiál interpretován jako vrstva, která je tvořena částicemi pocházejícími z okraje kráterů bez přítomnosti ledu.

Relativní stáří různých jednotek na povrchu Callisto se dá určit za pomoci četnosti impaktních kráterů, které se na jejich povrchu nacházejí. Čím je povrch starší, tím více impaktních kráterů se na něm nachází. Absolutní datování povrchu zatím neproběhlo, ale na základě teoretických úvah se předpokládá, že krátery poseté planiny jsou okolo 4,5 miliardy let staré, což odpovídá téměř době vzniku sluneční soustavy. Stáří multi-prstencových struktur a impaktních kráterů záleží na zvolené rychlosti vzniku impaktních kráterů a různí autoři se rozcházejí v datování mezi 1 až 4 miliardami let.

Atmosféra a ionosféra

 
Indukované magnetické pole kolem Callisto

Callisto má velmi slabou atmosféru tvořenou oxidem uhličitým. Byla detekována zařízením Near Infrared Mapping Spectrometer (NIMS) na palubě sondy Galileo z absorpcí záření o vlnové délce 4,2 mikrometru. Povrchový tlak atmosféry byl určen na 7,5×10−12 baru a hustota částic na 4×108 cm−3. Jelikož takto slabá atmosféra by se ztratila za pouhé čtyři dny, musí být konstantně doplňována, pravděpodobně sublimací suchého ledu z měsíční ledové kůry, což by bylo ve shodě s hypotézou sublimační degradace povrchu vysvětlující vznik povrchových pahorků.

Ionosféra Callisto byla poprvé detekována během průletu sondy Galileo, její hustota elektronů dosahující (7 až 17)×104 cm−3 nemůže být vysvětlena pouhou fotoionizací atmosférického oxidu uhličitého. Z toho důvodu existuje možnost, že v atmosféře Callisto v současnosti dominuje molekulární kyslík, který je 10 až 100 krát četnější než CO2.  Nicméně kyslík zatím nebyl přímo v atmosféře Callisto detekován. Pozorování za pomoci Hubbleova vesmírného dalekohledu (HST) určily horní limit jeho možné koncentrace v atmosféře.  V ten samý čas byl HST schopen detekovat kondenzovaný kyslík zachycený na povrchu Callisto.

Původ a vývoj

Částečná diferenciace Callisto (odvozena například z měření momentu setrvačnosti) znamená, že měsíc se nikdy uvnitř nezahřál natolik, aby došlo k roztavení jeho ledové složky. Proto se jako nejvíce pravděpodobný model jeví vznik měsíce pomocí pomalé akrece v nízkohustotní mlhovině tvořené plynem a prachem, obíhající okolo Jupiteru po jeho zformování. Takovýto pomalý stupeň akrece by mohl umožnit držet krok ochlazování měsíce s akumulací tepla způsobenou impakty, rozpadem radioaktivních prvků a kontrakcí měsíce a tím zabránit roztavení materiálu a rychlé diferenciaci. Možný čas potřebný pro vznik Callisto se pak pohybuje mezi 0,1–10 milióny let.

 
Pohled na erodované (horní) a téměř zcela erodované (dolní) ledové vrcholky (vysoké okolo sta metrů), které byly pravděpodobně zformovány dopadem ejekty vyvržené při vzniku prastarých kráterů.

Pozdější evoluce Callisto po akreci závisela na bilanci tepla z radioaktivních rozpadů, ochlazování tepelnou kondukcí poblíž povrchu a subsolidovou konvekcí uvnitř měsíce. Podrobnosti subsolidové konvekce v ledu jsou zdrojem největších nejistot v modelech všech ledových měsíců. Je známo, že vzniknou, když je teplota dostatečně blízko bodu tání, vzhledem k teplotní závislosti viskozity ledu. Subsolidová konvekce v ledových tělesech je pomalý proces s pohybem ledu okolo 1 cm/rok, ale ve skutečnosti se i tak jedná o velice efektivní chladicí mechanismus z dlouhodobého hlediska. Zdá se, že probíhá v podmínkách, kdy pevná chladná vrstva při povrchu měsíce vede teplo kondukcí, zatímco pod ní se led nachází v subsolidovém stavu, takže může vést teplo konvekcí. Vnější konduktivní vrstva u Callisto odpovídá chladné a pevné litosféře o tloušťce 100 km. Její přítomnost by vysvětlila nepřítomnost jakýchkoliv známek vnitřní aktivity na povrchu měsíce. Konvekce ve vnitřních částech měsíce může být v různých vrstvách odlišná, protože vlivem vysokých tlaků zde se vodní led vyskytuje v různých krystalických fázích od tzv. ledu I na povrchu až po led VII hluboko uvnitř měsíce. Subsolidová konvekce v nitru Callisto mohla bránit tání ledu ve větším měřítku, takže nemohla proběhnout žádná vnitřní diferenciace tělesa, která by jinak vedla k vytvoření velkého kamenného jádra a ledové kůry. Vlivem konvekčních procesů zde však probíhalo jen velmi pomalé a částečné oddělování kamenných materiálů a ledu, a to v časovém měřítku miliard let, a je možné, že tento proces stále není ukončen.

Podle toho, co zatím o Callisto víme, nelze vyloučit existenci vrstvy či „oceánu“ kapalné vody pod povrchem měsíce. To je spojeno s anomálním chováním ledu krystalické fáze I, jehož teplota tání klesá s tlakem, a to až na 251 Kelvinů při tlaku 2 070 barů. Ve všech realistických modelech vnitřní stavby Callisto teplota ve vrstvě v hloubce mezi 100–200 km je velmi blízko této anomální teploty tání nebo ji lehce překračuje.  Přítomnost i malého množství čpavku (okolo 1–2 hmotnostních %) téměř garantuje existenci kapalné vrstvy, jelikož čpavek dále snižuje teplotu tání.

Zatímco objemově je Callisto velice podobný Ganymedu, jeho geologická historie byla pravděpodobně jednodušší. Povrch Callisto byl snad formován impakty a dalšími exogenními pochody.  Na rozdíl od sousedního Ganymedu, který má povrch pokryt rýhami, existuje jen málo náznaků o tektonických procesech na Callisto. Relativně jednoduchá geologická historie Callisto tak umožňuje planetologům využívat měsíc jako referenční těleso pro srovnávací studie s více aktivními a komplexními světy.

Možný život v oceánu

Podobně jako v případě Europy a Ganymedu, i na Callisto by se potenciálně mohl nacházet mimozemský mikrobiální život ve slaném oceánu pod povrchem Callisto. Nicméně případné životní podmínky na Callisto jsou nehostinnější než u Europy. Hlavními důvody jsou nedostatek spojení s pevným materiálem a nižší tepelný tok z vnitřních oblastí Callisto. Torrence Johnson k možnosti života na Callisto ve srovnání s dalšími Galileovo měsíci řekl:

Základní ingredience pro život, které my nazýváme „pre-biotická chemie“, jsou četné na mnohých tělesech sluneční soustavy, jako jsou komety, asteroidy a ledové měsíce. Biologové předpokládají, že pro podporu života je potřeba kapalná voda a energie, takže je vzrušující najít další svět, kde by kapalná voda mohla existovat. Ale energie je dalším předpokladem a v současnosti je oceán Callisto zahříván pouze rozpady radioaktivních prvků, kdežto Europa má navíc ještě teplo produkované slapovými jevy kvůli blízkosti k Jupiteru.

Na základě výše zmíněného názoru a dalších vědeckých pozorování se věří, že největší možnost výskytu mimozemského bakteriálního života je na Europě.

Průzkum

Průlety amerických sond Pioneer 10 a Pioneer 11 kolem Jupiteru v 70. letech 20. století přinesly jen málo nových informací, které by nebyly známé z pozorování pozemskými teleskopy. Průlom přišel až s další generací amerických sond Voyager 1 a Voyager 2, které Joviánskou soustavou prolétly mezi roky 1979 až 1980. Sondy pořídily snímky téměř poloviny povrchu Callisto s rozlišením mezi 1 až 2 kilometry na pixel, určily přesně teplotu povrchu, hmotnost a tvar. Druhá část výzkumu proběhla mezi lety 1994 až 2003, když kolem měsíce osmkrát těsně prolétla další americká sonda Galileo. Poslední průlet C30 v roce 2001 se odehrál jen 138 km nad povrchem měsíce. Sonda Galileo dokončila snímkování povrchu s množstvím snímků o rozlišení 15 metrů u vybraných oblastí. V roce 2000 sonda Cassini, na své cestě k Saturnu, pořídila v infračerveném spektru vysoce kvalitní snímky všech Galileových měsíců včetně Callisto. Mezi únorem až březnem roku 2007 pořídila nové snímky ve viditelném světle a provedla spektrální měření sonda New Horizons na své cestě k Plutu.

Na rok 2020 se plánuje start společného projektu americké NASA a evropské ESA s názvem Europa Jupiter System Mission (EJSM) za účelem výzkumu Jupiterových měsíců. V únoru 2009 bylo oznámeno, že projektu se dává přednost před misí Titan Saturn System Mission. Mise EJSM sestává z Jupiter Europa Orbiter pod patronací NASA a Jupiter Ganymed Orbiter vedenou ESA.

Případná kolonizace

 
Umělecká představa základny na povrchu Callisto[
V roce 2003 provedla americká NASA studii nazvanou „Human Outer Planets Exploration“ (HOPE) týkající se budoucího pilotovaného průzkumu vnějších oblastí sluneční soustavy. Cílem detailního výzkumu se stal měsíc Callisto.

V rámci studie se zvažovalo využití Callisto jako potenciálního tělesa, kde by se mohla postavit povrchová základna využívaná pro produkci paliva potřebného pro průzkum vnějších oblastí sluneční soustavy. Výhody Callisto jsou nižší radiace, jelikož se měsíc nachází nejdále z Galileových měsíců, a geologická stabilita povrchu. Stálá základna by mohla být využita během průzkumu Europy, či by byla ideálně umístěna pro servis lodí pro průzkum vnějších okrajů sluneční soustavy, které by kolem Jupiteru prolétaly za použití efektu gravitačního praku po zastávce na Callisto.

Ve zprávě z prosince 2003 NASA uvedla, že by se pokus o pilotovanou misi ke Callisto mohl uskutečnit ve 40. letech 21. století.

LANGUEST

Líbí se vám tyto stránky?

Ano (371 | 37%)
Ne (312 | 31%)
1000.png
vesmiru.png
epublishing-orange.jpg
Flag Counter
Name
Email
Comment
Or visit this link or this one